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Aging kinetics of supported metal catalysts are represented by a model account- 
ing for diffusion of crystallites on the support and sintering of the colliding crystal- 
lites. Equations are established for the time dependence of the distribution of 
crystallite sizes and for the decay of the exposed surface area of metal for both 
homogeneous and nonhomogeneous surfaces. For homogeneous surfaces the size 
distribution becomes after a certain time almost independent of the initial distribu- 
tion and can be represented by a universal curve. On the basis of the universal 
curve simple decay equations for the exposed surface area of metal (8) are ob- 
tained. For nonhomogeneous surfaces having some sites which interact strongly with 
crystallites an equilibrium size distribution is reached. 

The effect of temperature is accounted for by interactions beta-een the metal and 
support. At high temperatures, the mobility of the crystallites on the support is 
relatively great and the sintering process is rate determining. At lower tempera- 
tures the aging process is diffusion controlled. 

The atmosphere affects the aging process by influencing the surface free energies 
and hence the work of adhesion and the wetting angle between the crystallites and 
support. If the wetting angle is decreased the mobi1it.y of the crystallites is 
decreased. 

Considerations based on surface chemistry are used to suggest possibilities for 
increasing the stability of the highly dispersed state of metal. For example, stability 
may be increased if certain alloys are used rather than pure metals. 

INTRODUCTION 
platinum crystallites and thus a decay of 
the exposed surface area of the metal. 

The degree of dispersion of a metal on a Analyzing the available experimental 
support affects both the activity and selec- data (1, 3, 6, 7), described below in some 
tivity of the supported metal catalyst. In detail, we have observed that the rate of 
freshly prepared catalyst the metal is gen- decay of exposed surface area of metal is 
erally highly dispersed so that a large frac- given by an equation of the form 
tion of the metal atoms are accessible to 
reactants. Deactivation and aging, ob- 

dS -= 
dt 

-KS”, (1) 
served after excessive heating (1-7) or use 
under industrial conditions (5, 7, 8)) are where the exponent n has a lower bound of 
associated with aggregation and sint.ering about 2 and an upper bound as large as 8. 
of the small crystallites. For example, The large range in the value of the expo- 
Herrmann et al. (6) and Maat and MOSCOU nent suggests that more than one process 
(1) observed that heat treatment of a is responsible for the decay of the exposed 
highly dispersed supported platinum cata- surface area of metal. 
lyst caused the formation and growth of Several models have been developed by 
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the authors (9) to describe the aging 
process caused by thermal treatment. The 
models assume (a) diffusion of the crystal- 
lites upon the surface of the support and 
(b) sintering of the colliding particles. 
Quantitative descriptions of the decay of 
the exposed surface area have been ob- 
tained in particular in the two limiting 
cases of diffusion and sintering control. For 
sintering control the value of n is about 2, 
while for diffusion control it may be as 
large as 8. 

The goals of the present research are: 
(a) from the proposed models to obtain in- 
formation concerning the size distribution 
of the metal crystallites for various pos- 
sible mechanisms and to compare the dis- 
tribution with available experimental data; 
(b) to obtain additional information con- 
cerning the rate of decay of the exposed 
metal surface area and to relate the expo- 
nent ?z from Eq. (1) to the mechanism of 
the aging process ; (c) to suggest explana- 
tions for the effects of the atmosphere on 
the aging process; (d) to explain the effect 
of the method of preparation of the sup- 
ported metal catalyst on the aging process; 
(e) to suggest possible ways to increase the 
life (stability) of the small crystallites. 

In the first section of the paper the main 
results of our previous paper are reviewed 
and further arguments supporting the 
physical models are presented. Some modi- 
fication of the earlier models are added 
which take into account the nonhomogene- 
ity of the surface of the support. Subse- 
quently the time evolution of the size dis- 
tribution and of the exposed surface area 
are analyzed. There follows a detailed com- 
parison between theory and experiment 
concerning both the time decay of the ex- 
posed surface area of metal and the size 
distribution of the metal crystallites. Fi- 
nally possible improvements of the stability 
of the highly dispersed state of the metal 
are suggested. 

PHYSICAL MODEL AND KINETIC EQUATIONS 

The physical model is based upon the 
assumptions of (a) diffusion of the crystal- 
lites upon the surface of the support and 
(b) sintering of the colliding particles. 

We consider an initially highly dispersed 
state of metal on the surface of the sup- 
port, assumed for simplicity to be planar 
and energetically homogeneous. For suffi- 
ciently high temperatures the agglomerates 
of metal atoms have some mobility on the 
surface of the support. Indeed, Bassett 
(10, 11)) using electron microscopy and a 
high-vacuum system, observed translation 
of copper and silver islands on amorphous 
carbon and graphite and rotation as well 
as translation of silver islands on a molyb- 
denite support at temperatures as low as 
525 K. Skofronick et al. (12, 13) observed 
motion and coalescence of gold islands on 
amorphous supports of carbon and silicon 
in the temperature range 500 to 700K. 
They found that the number of islands per 
unit surface area decreased with time and 
that their mean radius increased. 

Crystallites of supported catalysts are 
of the order of 10 to 100 A in diameter, 
about the same size as the agglomerates in 
the above-mentioned experiments. Conse- 
quently the assumption that the crystal- 
lites migrate on the surface of the support 
has experimental confirmation. 

Alternative mechanisms of mass transfer 
by which growth of the crystallites might 
occur are (a) atomic breakup of the crys- 
tallites with consecutive migration of the 
atoms over the support and (b) evapora- 
tion of the metal with consecutive vapor 
phase transport. Since the bonding energies 
of metal atoms to metal crystallites are 
much larger t,han the bonding energies of 
metal atoms to nonmetallic supports, dis- 
sociation of metal atoms is unlikely (13, 
18) .* Evaporation rates of metal have 
been measured and found to be several 
orders of magnitude too low to account for 
the observed growth of the metal crystal- 
lites (5, 13). 

The following treatment emphasizes 
situations in which sintering of the support 

*There are special conditions under which 
breakup of crystallites with consecutive migra- 
tion of the formed particles can take place. This 
problem, of particular interest in the regenera- 
tion of catalysts, is discussed briefly in the last 
sect,ion of the paper and will be examined more 
fully in another paper. 
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is of secondary importance. That such an 
assumption can be made, at least in a dry 
atmosphere, is shown for instance in refer- 
ences (14, 15). 

The decay process is thus a consequence 
of the migration of crystallites on the sup- 
port surface. Though the detailed mecha- 
nism of this migration is not known, it is 
clear that it is induced by the thermal mo- 
tion of the atoms at the metal-support 
interface. Because of the random character 
of these thermal motions it is reasonable 
to represent the motion of the crystallites 
upon the surface of the support by a dif- 
fusional model. 

When two crystallites collide, two limit- 
ing situations can occur. In one of them the 
interaction between the colliding particles 
is so strong that they form a single unit 
within a time which is short compared to 
the diffusional time. The rate of sintering 
is in this case diffusion controlled. If the 
time of the merging process of the colliding 
particles into a single unit is long com- 
pared to the diffusional time, then the 
merging process is the rate-determining 
step. For such a situation the name (‘sinter- 
ing control” will be used. 

Only the main results of the analysis 
(9) based on the above-mentioned assump- 
tions will be given here. Because only bi- 
nary collisions are important, the number 
of crystallites per unit surface area of Sup- 
port composed of lc metal units, N,,, in- 
creases by collisions of particles composed 
of i and k - i metal units and decreases 
by collisions of the particles composed 
of Ic units with the other particles. 
Consequently, for a homogeneous surface, 

co 
dNvL _ I --- 

at 2 c 
KijNvNw, - Nvk 

c 
IL&; 

i+j=k i=l 

(2) 

where Kii are second-order rate constants 
dependent upon the mobility of the par- 
ticles on the support and on the nature 
of the interaction between the particles (9). 

For the two limiting situations of “dif- 
fusion control” and “sintering control” the 
rate constants Kij are given by (9) 

and 

(diffusion control) (3) 

Kij = 2rRiiai, (sintering control). (4) 

olii is a reaction-rate constant for the merg- 
ing process, l&j = Ri + Rj is the radius 
of interact.ion of the two colliding particles, 
and Dii is the diffusion coefficient of par- 
ticle i with respect to particle j. 

As pointed out previously (9), the pres- 
ent approach involves two time scales: a 
large scale of time t, introduced in Eq. (2), 
which coincides with the time of the 
process, and a small scale of time 8’, used 
in the calculation of the rate of collisions 
and thus of the rate constants Kii. In the 
case of sintering control, the rate constants 
are independent of the small-scale time 
[Eq. (4)], because the small time affects 
only the rate of diffusion of the particles 
towards a selected particle. In this situa- 
tion the diffusion is not the rate-determin- 
ing step. In the case of “diffusion control,” 
the rate constants depend on the small- 
scale time, but in certain situations this 
dependence is after a very short time very 
weak (see Appendix I) and 

490.. 
Kij = m;, (3”‘) 

(where T = Di#‘/Ri$) becomes a good 
approximation for Eq. (3). Equation (2) 
together with Eqs. (3”’ and 4) describes the 
sintering process in the two limiting situa- 
tions. These equations will be used to ob- 
tain both the time dependence of the par- 
ticle-size spectrum and the time evolution 
of the exposed surface area. 

The surface of the support is in reality 
nonhomogeneous from a topographic and 
energetic point of view. Some sites can in- 
teract so strongly with the crystallites that 
they are immobilized; also some regions of 
the surface can entrap crystallites. 

Besides the quantities N,, representing 
the number of moving crystallites per unit 
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surface area of support, the quantities F,, 
representing the number of fixed crystal- 
lites per unit surface area of support com- 
posed of k metal units are now of signif- 
icance. Two probabilities are introduced. 
The probability p that a particle formed 
by the collision of two moving particles 
will form a mobile particle and the prob- 
ability q that a trapped particle will be- 
come mobile after a collision with a 
moving particle. The probability p is a 
consequence of the fact that some of the 
collisions take place, either over sites which 
can interact strongly with the crystallites, 
or over trapping regions. For simplicity 
sake p and q are assumed size independent. 
The moving particles can encounter trap- 
ping regions becoming fixed. This is equiva- 
lent to introduce in the equations a first- 
order chemical reaction of the type &Nva. 

The concentration N,, increases by the 
collisions between moving particles com- 
posed of i and k - i metal units which lead 
to mobile particles, and by the collisions 
between moving particles of i units and 
fixed particles of Ic - i units which gen- 
erate moving particles. It decreases by 
trapping and by collisions between the 
moving particles of Ic units and all the 
other particles. 

The concentration F,, increases by trap- 
ping of mobile particles, by the collisions 
between moving particles of i metal units 
and fixed particles of k - i units which 
generate immobilized particles, and by the 
collisions between moving particles of i 
and lc - i units which form fixed particles. 
It decreases by collisions between fixed par- 
ticles of Ic units and all the moving 
particles. 

Therefore, the rate of change of N,, and 
F,, can be written as 

dNvk 1 -=- at 2P c K i,NviNvI 

-tq c K*ijNviFv, - BkNv, @a) 
i+j=k 

and 

dF% 
dt - (1 - d K*ijNv,Fv j 

i+j=k 

+ f (1 - P> 
c 

KijNv,Nv, 
i+j=k 

OD - Fvb c K*i&vi + PkNv, (5b) 
i=l 

Equations for the rate constants K”ij can 
be obtained as in our previous paper (9) 
taking however into account the trapping 
and replacing the diffusion coefficient Dij 
of particle i with respect to particle j 
(Dij = Di + Dj) by the diffusion coeffi- 
cient Di of the moving particle. The rate 
constants Kii must also be recalculated. 

EFFECT OF THE RATE DETERMINING 
STEP OF THE SINTERING PROCESS 

ON THE PARTICLE, SIZE DISTRIBUTION 
FOR HOMOGENEOUS SURFACES 

The equations for the discrete spectrum 
of particle sizes were solved numerically 
for the initially unisized distribution: 
N,,,O = No for i = 1 and N,, = 0 for 
i # 1. A fourth-order Runge-Kutta method 
was used and as many equations (up to 
800) considered as were needed to ensure 
that no particle was lost in the calculations. 
Errors due to the underflow of the comput- 
ing machine were negligible. 

The two limiting cases of “sintering con- 
trol” [ Eqs. (2 and 4) ] and “diffusion con- 
trol” [Eqs. (2 and ,“‘)I are considered for 
various size dependencies of the diffusion 
coefficients and reaction rate constants (see 
Table 1). 

In Figs. 1 to 5 are plotted the results ob- 
tained for the size distribution at different 
times and for different mechanisms. For 
“diffusion control” (Figs. l-3) the particle- 
size distributions develop a maximum be- 
cause the rate constants Kij decrease with 
increasing particle size, and therefore the 
smallest particles in the system disappear 
the fastest (see also Fig. 6). For “sintering 
control” a monotone decreasing particle 
size distribution is obtained (Figs. 4 and 
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TABLE 1 
TIME EVOLUTION OF EXPOSED METAL SURFACE AREA IN THE Two LIMITING CASES (9) 

Diffusion control 

Assumed size dependence 
of Dij Rate constants 

Rate equation for 
exposed surface area 

Kij = (7’1 

Kij = C’Z 

dS 
xi= - C”1SS (I-l’) 

dS 
Tt= 

- C”ys6 (I-2’) 

Dij = Cs Kij = C’a 
dS 
Tt= 

- C”sP (I-3’) 

Kinetic control 

Assumed size dependence 
Of Cvij Rate constants 

Rate equation for 
exposed surface area 

Ctij = C4 

Ti2 + Tj2 

CZij = CS ~ 
ri + rj 

K<j = C’I(T~ + Tj) 

K<j = C’i(ri2 + rj2) 

ds = -C”‘$S (I-4’) 

dt 
dS 
dt= -C”# (I-5’) 

5) because the rate constants Kij increase distributions for the same value of the 
with increasing particle size, and therefore ratio X,/X and for different mechanisms are 
the smallest particles in the system disap- compared. The particle-size distributions 
pear most slowly (Fig. 7). for the diffusion-controlled cases are sig- 

In Fig. 8 the results obtained for the size nificantly narrower than those obtained for 
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FIQ. 1. Particle size distribution from numerical FIG. 2. Particle size distribution from numerical 
solution of kinetic equations; unisized initial solution of kinetic equations; unisized initial 
distribution. distribution. 
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FIG. 3. Particle size distribution from numerical 
solution of kinetic equations; unisized initial 
distribution. 
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FIG. 4. Particle size distribution from numerica FIG. 6. Number of particlas of volume vi as a 
solution of kinetic equations; unisized initial 
distribution. 
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FIG. 7. Number of particles of volume 2); as a 
function of the dimensionless time ~1; unisized 
initial distribution. 
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Vi/V, 

FIG. 8. Particle size distribution for “diffusion 
control” and “sintering control” for the ratio 
SO/S = 3, unisized initial distribution. 

the sintering-controlled cases. This result 
suggests a criterion to differentiate between 
the two mechanisms. 

For initial size distributions different 
from the unisized, our calculations show 
that for sufficiently long times the size dis- 
tributions are very similar, approaching 
the curves obtained for an initially unisized 
distribution. This result raises the question 
of the possibility of superposing on a 
unique curve the time-dependent size spec- 
tra. It is shown in Appendix II that such a 
unique spectrum is obtained if the dimen- 
sionless groups N,,c#B/v~N~ and viN/+ are 
used as variables, where N is the total 
number of particles per unit surface area 
of support at a given time t, and + is the 
total volume of metal per unit surface area. 
Such a unique spectrum was first used in a 
different context (size distribution of aero- 
sols) by Friedlander (34, 35). 

In Fig. 9 the size distributions for the 
diffusion-controlled case are plotted using 
these dimensionless groups. Two different 
initial distributions are considered. For 
both, the initially monodispersed and ex- 
ponentially dispersed spectrum, the unique 

FIG. 9. Dimensionless size distribution for “dif- 
fusion control” and different initial distributions; 
the solid curve represents the similarity solution. 
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spectrum (solid line) is reached within a 
short time (Q N 2.5). 

TIME EVOLUTION OF EXPOSED SURFACE 

AREA FOR HOMOGENWUS SURFACES 

It will be assumed that the general shape 
of the particles is preserved during the 
growth process. Consequently the exposed 
surface area of a particle containing k 
units is given by 

Sk = Slk213 1 (6) 
where S, is the exposed surface area of a 
particle containing one unit. The time 
evolution of the rate of change of the ex- 
posed surface area may be calculated from 

m 

dS s -= 1 
2 

dNv* 
dt k2’3 dt’ (7) 

k=l 

In our previous paper (9) the equations 
for the decay of the surface area [Eqs. (2 
and 7)] were solved numerically for an 
initially unisized distribution. The two 
limiting cases of “sintering control” and 
“diffusion control” were considered, taking 
various size dependencies of the diffusion 
coefficients and the reaction rate constants 
into account. The results obtained are sum- 
marized in Table 1. 

One may observe that the rate equation 
of the exposed surface area is very sensi- 
tive to the rate determining step of the 
process. In the case of “sintering control” 
exponents of 3 and smaller are obtained for 
n [Eq. (l)] while for “diffusion control” 
the exponent is 4 or larger. 

These results, obtained previously for an 
initially unisized distribution, are of more 
general validity, because, as shown here, 
after a relatively short time the size dis- 
tribution can be represented by the similar- 
ity variables. In Appendix II an equation 
for the decay of the exposed surface area 
of the metal is derived on the basis of the 
similarity variables. The resulting equation 
[Eq. (19) from Appendix II] is indeed 
equivalent to those established on the basis 
of numerical computations for an initially 
unisized distribution (Table 1). The expo- 
nent of S in the rate equation for the decay 
of the exposed surface area of metal [Eq. 
(1) ] is thus dependent only on the assumed 

mechanism of the process and on the size 
dependence of the diffusion coefficient and 
reaction-rate constants, and it is almost 
independent of the initial distribution. 

SIZE DISTRIBUTION AND EXPOSED 
SURFACE AREA FOR NONHOMOGENEOUS 
SURFACES WITH SOME SITES WHICH 

INTERACT STRONGLY WITH CRYSTALLITES 

In this case, an equilibrium size distribu- 
tion is reached. Because the strong inter- 
acting sites have been active during the 
preparation process favoring the formation 
of crystallites, one may expect that a large 
fraction of these sites are covered by the 
immobile crystallites from the beginning. 
Neglecting the trapping regions, one may 
assume that p = 1 and /$+ = 0. Figure 10 
shows the size distribution, close to equilib- 
rium, obtained for different values of the 
initial ratio between moving and fixed is- 
lands and for an initially unisized size dis- 
tribution. By LLclose to equilibrium” we 
understand here that less than l/10 of the 
particles present are still mobile. Figures 
11-13 show the time evolution of the size 
distribution of the moving particles, fixed 
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FIG. 10. Particle size distribution in the non- 
homogeneous case, close to equilibrium. 
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k- r2=05 * 
K,J = C’R;’ 

25 

- I IO 100 500 
\I, PJ, 

FIG. 11. Time dependence of the size distribution 
of the moving particles, in the nonhomogeneous case. 
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FIG. 12. Time dependence of the size distribution 
of the fixed particles, in the nonhomogeneous case. 

FIG. 13. Time dependence of the size distribution 
of the total number of particles, in the nonhomo- 
geneous case. 
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FIG. 14. Effect of fixed islands on the time 
dependence of So/S. 
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NV, + FvI 
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FIG. 15. Effect of the probability p on the time 
dependence of the size distribution of the total 
number of particles. 

particles, and total number of particles for 
a specific example. Figure 14 shows the 
effect of fixed islands on S,/S for q = 0 
and various initial values of the ratio 
N,,/Fvl. Figure 15 shows the effect of the 
probability q on the distribution of sizes. 

The main conclusions are: (a) a narrow 
equilibrium size distribution is reached 
from an initially unisized distribution even 
if the ratio between mobile and fixed par- 
ticles is initially as large as 20; (b) the 
equilibrium size distribution is strongly 
dependent on the initial distribution (as 
opposed to the similarity solution obtained 
previously) ; (c) an equilibrium value is 
reached for S; and (d) the size distribution 
is, somewhat broadened when q = 0.5. Be- 
cause small values of q are expected, its 
influence appears to be of secondary im- 
portance. 

DISCUSSION AND COMPARISON OF MODEL 
PREDICTIONS WITH EXPERIMENTAL RESULTS 

Table 2 is a list of the experimental data 
available for the exposed metal surface 

area of Pt-on-alumina catalysts during 
heat treatment. One may observe that the 
exponent in the decay equation of the ex- 
posed surface area of metal is in the range 
2-8, thus covering both the cases of %in- 
tering control” and “diffusion control.” 

The results obtained in the particular 
cases can be interpreted as follows: Maat 
and Moscou (1) measured the rate of sin- 
tering of a platinum reforming catalyst at 
a temperature of 1053 K (Table 2, row 1), 
probably in an oxidizing atmosphere. They 
found that the decay of the exposed plati- 
num area followed second order kinetics, 
which, according to the present considera- 
tions, shows a sintering controlled decay. 
By means of electron microscopy they de- 
termined a large dispersion of the particle 
size distribution. The initial size distribu- 
tion was between IO and 50A, with an 
average particle size close to 10 A. After 
17 hr of sintering the distribution was be- 
tween 10 and 5OOA. Both the observation 
of a large dispersion of the particle sizes 
after sintering and the observation that the 
smallest particles existing initially were 
still present after excessive sintering (+15- 
fold decrease in surface area after 17 hr of 
sintering) are in qualitative agreement 
with a sintering controlled mechanism. 

Herrmann et al. (6) reported data on the 
sintering kinetics of Pt-ALO, and 
Pt-ALO,(F, Cl) reforming catalysts in the 
temperature range 837-898 K (Table 2, 
row 2) and a dry air atmosphere. The ex- 
posed surface area of metal was measured 
by hydrogen chemisorption. They found 
that the rate of decrease of the metal sur- 
face area-especially at 898 K-was sec- 
ond-order with respect to the metal surface 
area, thus indicating a sintering-controlled 
decay. 

Gruber (3) reported data on the sinter- 
ing behavior of Pt-on-alumina catalyst 
prepared by tetrammino platinum hydrox- 
ide impregnation. The sintering experiment 
was carried out at 773 K (Table 2, row 3) 
in a reducing atmosphere. Their data can 
be represented by a sixth-order reaction, 
which according to the present considera- 
tions, is an indication of diffusion con- 
trolled decay. 
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TABLE 2 
TIME EVOLUTION OF EXPOSED SURFACE AREA; EXPERIMENTAL RESULTS AND THEIR INTERPRET.4TION 

Reference 

Experimental results Model interpretation 

Temperature Rate of decay Diffusion coefficient 
and of exposed or reaction 

Type of catalyst atmosphere metal surface Controlling rate constant 

1 (0 

2 (6) 

3 (9 

4 (7) 

Pt on Y-Alumina 
0.5-0.7y0 Cloride 
o.lYg Pt 
140-180 mz/g 

support 

Pt on Y-Alumina 
a) 0.83% Cl, 

0.774% Pt 
225 m2/g 

support 
b) 0.357$ Cl, 

0.35vo F 
0.37570 Pt 
176 m2/g 

support 

Pt on r-Alumine 
1.1% Pt 
210 mZ/g support 

Pt on Alumina 

1053 K 
Probably 

dry air 

898 K 
Dry air 

773 K 
HZ 

755 K 
811 K 

HZ 

i!! = -KlS2 
dt 

Sintering a11 = 4. x lo-9 
cm/set based on 
particle 10 ;i in 
size 

dS 
- KzP 

Sintering al, = 1. x 10-g 
Z’ cm/set based on 

particle 10 ,% in 
size 

dS Diffusion ll, ‘v 8. X lo-18 -= 
dt 

- KaP 
cm2/sec based on 
particle 10 ;i in 
size 

dS dt ~ -K4sS Diffusion 

t!!! - -K S7.8 
dt- ’ 

Hughes et al. (7) (Table 2, row 4) ob- 
tained results similar to those of Gruber 
(3). They measured the exposed surface 
area of metal as a function of time at 755 
and 811 K in a reducing atmosphere. The 
experimental rate of decay of the exposed 
surface area of metal indicates a diffusion 
mechanism, however, with a stronger size- 
dependent diffusion coefficient than in 
Gruber’s experiments. 

We stress that even a qualitative dis- 
cussion of the above-mentioned data leads 
to the conclusion that two different mecha- 
nisms occur. In some of the cases the de- 
cay of the exposed metal surface area is 
rapid, being for instance a 15-fold decay 
after 17 hr of heating in an oxidizing 
atmosphere at 1053 K (1) and a 12.5-fold 
decay after 40 hr at 898 K (6). As opposed 
to these situations, Gruber (S) reports that 
at 773 K and in a reducing atmosphere a 
heat treatment of 1200 hr leads to only a 

2.5-fold decay of the exposed surface area 
of metal, while Hughes et al. (7) observed 
a S-fold decay after 1000 hr at 811 K also 
in a reducing atmosphere. Consequently, a 
decrease in temperature from 1053 to 
898 K and in an oxidizing atmosphere re- 
sults in a decrease of the rate of sintering 
by about a factor of 4. A further drop in 
temperature by another 100K together 
with a change of the chemical atmosphere 
to a reducing atmosphere slows down the 
sintering by more than two orders of mag- 
nitude, and changes the exponent n in the 
rate equation [Eq. (l)] substantially. Ob- 
viously the decay of the surface area of 
metal is controlled in those situations by 
different processes. 

As suggested by the present treatment, 
the rate of the process is either controlled 
by the random motion of the crystallites on 
the surface of the support or by the merg- 
ing of two colliding particles into a single 
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particle. At sufficiently high temperatures 
the mobility of the crystallites upon the 
support is high and one may expect that 
the merging process is the rate-determining 
step. For not too high temperatures, the 
mobility of the crystallites is lower and 
consequently the diffusion of the crystal- 
lites on the support prevails. The data 
presented above are compatible with this 
explanation showing that at high tempera- 
tures the process is indeed controlled by 
the merging process, while at lower tem- 
peratures the process is diffusion controlled. 

The rate of decay depends also on the 
chemical atmosphere (5, 7, 8, 17). At the 
same temperature the rate of decay is 
much higher in an oxidizing than in a re- 
ducing atmosphere (5, 17). Our theoretical 
approach can explain such behavior, be- 
cause the diffusion coefficients of the crys- 
tallites and the reaction-rate constants of 
the merging process depend upon the sur- 
face properties of the system. The chemi- 
sorption process essentially changes the 
surface free energies and the surface diffu- 
sion of the metal on the metal. If the wet- 
ting angle of the crystallite on the support 
becomes larger, due to the changes in the 
surface free energies, then the surface 
of crystallite-support contact becomes 
smaller and consequently their interaction 
smaller.? In this case the mobility (diffu- 
sion coefficient) of the crystallite is in- 
creased. The merging process also depends 
upon the surface free energy and surface 
diffusion of the metal atoms on the metal 
surface (18). For instance, the surface dif- 
fusion coefficient of copper atoms on cop- 
per is increased by a factor of about 5 in 
the presence of oxygen compared to a re- 
ducing atmosphere (19). 

No data are yet available to establish 
the effect of chemical atmosphere on the 
wetting angles between metals and sup- 
ports used in supported metal catalysts. 
Some data, however, for the wetting angle 
of drops of NaaSi,Os-glass on several metals 

t For very small crystallites the surface free 
energies and the wetting angle depend upon 
their dimensions. Our discussions imply the as- 
sumption that their qualitative behavior is as 

for large objects. 

show an important effect of the atmos- 
phere on the wetting angle (20, 21). 

Some authors have suggested that a pos- 
sible explanation for the increase in the 
rate of sintering in an oxygen atmosphere 
is the mass transfer caused by formation 
and vaporization of PtOz (5, 17). Informa- 
tion available in the literature concerning 
platinum wires or bands shows that the 
losses of platinum in an oxygen atmosphere 
are negligible at temperature below 1050 K 
(22-24). Though for the small crystal- 
lites of interest here the vapor pressure is 
increased due to the curvature effect, our 
evaluations show that the rate of vaporiza- 
tion [limited in the present case by the 
diffusion of PtO, molecules away from 
the surface (25)] for the temperature 
range of interest remains negligibly small. 

The diffusion coefficient computed by us 
are very small, of the order of lo-l7 cm’/ 
see at 773 K for a crystallite 10 A in diam- 
eter (Table 2). The values measured for 
the diffusion coefficient of aluminum is- 
lands of the same size on KC1 at even 
lower temperatures are larger by several 
orders of magnitude, 10-12-10-14 cm2/sec 
(26, 27). The reason for this difference 
probably lies in the nature of the inter- 
actions between metal and support, inter- 
actions which depend upon the roughness 
of the surface of the support and the 
nature of the bonds between the metal 
and support. Obviously in the cases in 
which the pores are not sufficiently large 
compared to the size of the crystallites, 
another restriction appears. 

Concerning the interactions between 
metal and support, let us observe that for 
small aluminum islands evaporated onto 
the KCl-substrate and also for metal crys- 
tallites of a completely reduced supported 
metal catalyst, relatively weak interac- 
tions of the van der Waals type are domi- 
nant (18). The preparation history of the 
supported catalyst, on the other hand (for 
example preparation by adsorption (or 
ion exchange) as opposed to preparation 
by impregnation) might influence the na- 
ture of the bonds at the metal-substrate 
interface: If the catalyst is prepared by 
adsorption from a solution containing for 
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example (Pt (NH,) ,) Cl,, then during prep- 
aration strong ionic bonds are formed be- 
tween the acidic groups of the support and 
Pt (NH,) 42+ (4). In the impregnation pro- 
cedure no such strong interaction between 
the platinum salt and the support exists. 
Perhaps even after reduction the strong 
ionic metal-substrate bonds are partly 
preserved in the catalyst prepared by ad- 
sorption, thus leading to decreased mobil- 
ity of the particles. Consequently, a higher 
stability of the highly dispersed state of 
metal is expected if the support is more 
acidic and an adsorption procedure is used 
for the preparation of the supported metal 
catalyst. 

During preparation of the supported 
metal catalyst, high temperatures are often 
used, in particular in the reduction period. 
Thus migration and sintering of the unre- 
duced platinum can also occur. The extent 
of sintering depends on the temperature, 
on the duration of the reduction period, 
and as discussed above, on the method of 
preparation. Consequently a higher degree 
of sintering is expected during the reduc- 
tion period for an acidic support when the 

impregnation rather than an adsorption 
method is used. There is experimental con- 
firmation (4, 29) of this observation. 

It was shown above that for diffusion 
control the particle-size distribution can 
be represented by a unique spectrum after 
a dimensionless time T N 2.5. (For the 
catalyst used by Maat and Moscou and 
for a diffusion coefficient of about 10-l” 
cm’/sec, one obtains a time of the order 
of 500 sec.) It is natural to expect that 
the size distribution for a freshly prepared 
catalyst, when reduced at high tempera- 
tures, can be represented by the unique 
spectrum. In Fig. 16, the experimental re- 
sults of Wilson and Hall (28, 29) are com- 
pared with the theoretical predictions. The 
ratio 

rather t,han +” is selected as a variable 
both because it is convenient and because, 
like $” it is dependent only on vi*. Theory 
and experiment are in good agreement in 
showing that the size distribution of 

v 500°C Adsorption 
v 770°C 
0 5aYc 

Impregnation 1 

on Silica [29, Fig.11 

. 600°C 
q 475OC Impregnation on Alumina [28, Fig.11 

- Simllority solution for diffusion control 

with KiJ=Ci[R;*+‘j’] 

FIG. 16. Comparison between the theoretical similarity solution and Wilson and Hall experimental data 
for size distribution in fresh catalyst prepared at high reduction temperature. 
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freshly prepared catalysts reduced at high 
temperatures already follows the unique 
spectrum closely. 

There are some data in the literature 
(2) which appear to show that after a 
sufficiently long time of heat treatment 
sintering no longer occurs. Probably that 
in those cases the surface was nonhomo- 
geneous and the equilibrium distribution 
was reached. 

POSSIBLE IMPROVEMENTS OF THE STABILITY 
OF A HIGHLY DISPERSED 

STATE OF METAL 

From the previous discussion it results 
that the stability of a highly dispersed 
state of metal may be increased by con- 
trolling (a) the wetting angle of the metal 
crystallites, (b) the interactions between 
the metal and support, (c) the merging 
behavior of two colliding particles into 
one particle, (d) the number of fixed 
islands. 

(a) The wetting angle can be changed if, 
instead of using a pure metal, surface 
active metals are also present as impurities. 
Some information concerning the variation 
of the wetting angle with the concentra- 
tion c of a soluble impurity can be ob- 
tained from Young’s equation 

uw - usst = uatg cos e @I 

Taking the derivative with respect to c, 
one obtains 

da -3 _ da,,, du t 
- = cos 0 2’ - sin 8 u 

de dc dc 

Gibbs’ equation allows us to write 

where rss is the surface excess concentra- 
tion of the impurity on the support-gas 
interface, Tss, is the surface excess con- 
centration of the impurity on the support- 
metal interface, rstg is the surface excess 
concentration on the metal-gas interface, 
and p is the chemical potential. For sim- 
plicity it is assumed that the solid solu- 
tion is ideal. Consequently, 

dp = RTdlnc 

Equation (9) becomes 

de 
udg sin 19 - 

d In c 
= RT(r,, - rsst - COSB~,~,). (12) 

In the situations in which rsg - rss, - 
cos ersjs < 0, the impurity contributes to 
the decrease of the wetting angle and con- 
sequently to a lower mobility of the crys- 
tallites. If no adsorption occurs on the 
support--gas interface near the leading 
edge of the crystallite, then a decrease in 
the wetting angle will always take place 
when the surface active metal is preferen- 
tially adsorbed on the solid-solid interface. 
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(11) 

(b) If the impurity is soluble in the 
support, then the mobility of the crystal- 
lite will decrease because a stronger inter- 
action between the crystallite and support 
is induced. In terms of concepts from sur- 
face chemistry, the stronger interaction 
has as a consequence the decrease of 
the surface tension solid-solid and conse- 
quently of the wetting angle. Indeed, the 
surface tension solid-solid, ug5,, is related 
t,o the surface tensions ugg and usrg by the 
equation”* 

usa, = usg + G’g - Ud + Usw (13) 

where U,,, is the interaction energy per 
unit surface area between the atoms on 
one side of the interface and the atoms on 
the other side of the interface, and Ustr 
is the strain plus the dislocation or fracture 
energies per unit surface area, induced by 
the disregistry between the lattices of the 
support and of the metal. Consequently 
us*, decreases when U,,, increases. Equa- 
tion (13) can be understood if one con- 
siders the limiting situation of two parts 
of the same solid body separated by an 
imaginary plane. In this case 088, must be 
zero. 

However, too much impurity dissolved 
in the support may have a destructive ef- 
fect upon the support structure, increas- 
ing much more the term Ustr than the 
term U,,,. In this situation the surface 

** The quantity W = ma0 + (T.,~ - (rlIt = U,,, - 
User represents the work of adhesion. 
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tension uss, is increased and consequently 
(assuming that the other two surface ten- 
sions are not affected much) the wetting 
angle and the mobility of the crystallite 
increase. One thus may expect that the 
mobility will be decreased for small con- 
centration of the impurity and increased 
for large concentrations. Of course the 
surface active impurities also influence the 
values of usfg and ‘T,~. 

There are some experimental results in 
the literature (30) concerning the effect 
of interfacially active metals on the wet- 
ting and adhesion of liquid nickel drops 
to OI-ALO~. They can be interpreted on 
the basis of the above considerations. For 
high-purity nickel at 1773 K and 5 X lo-’ 
Torr the contact angle 8 = 100.7 degrees, 
the surface tension at the Ni-Al,O, inter- 
face is equal to 1296 ergs/cm2 and the 
work of adhesion to 1390 ergs/cm2. Addi- 
tion of 0.99 atomic% titanium to the nickel 
resulted in a decrease of the wetting angle 
to 94.5 degrees, a decrease of the surface 
tension at the Ni-Al,O, interface to 1090 
ergs/cm2 and an increase of the work of 
adhesion to 1640 ergs/cm’. Using electron 
beam X-ray microanalysis, it was found 
that the titanium was concentrated in the 
vicinity of the nickel-support interface, 
resulting in an increase of the adhesion of 
the drop to the support. 

Addition of 1 atomic% zirconium to the 
high purity nickel resulted in an increase 
of the wetting angle to 136.2 degrees; in 
an increase of the surface tension at the 
Ni-AI,O, interface to 2220 ergs/cm2; and 
in a decrease of the work of adhesion to 
500 ergs/cm2. Electron photomicrographs 
revealed that the zirconium was concen- 
trated in the vicinity of the nickel-sub- 
strate interface, chemically reducing the 
Al,O, support and weakening its structure. 
The energy Ust,. was thus increased, result- 
ing in a decreased adhesion of the drop to 
the support. One may conclude that the 
stability of the highly dispersed state of 
metal on a support may be substantially 
increased if certain alloys are used rather 
than pure metals. The higher stability of 
reforming catalysts obtained by Sinfelt 
(31) and his group can probably be 

explained on the basis of the above 
considerations. 

(c) The rate of sintering of two spheres 
in contact increases with increasing surface 
diffusion and surface tension (32). The 
sintering of two spherical caps of different 
radii on a support has not yet been studied 
from a theoretical point of view. In the 
last, case the surface tension at the metal- 
support interface will also play a role and 
the rate of sintering will be decreased with 
increasing metal-support interactions. 

(d) As shown in Section 4 the st’ability 
of the catalyst can be much improved if 
some strongly interacting sites can be 
generated. Perhaps this can be done using 
a double adsorption or double impregna- 
tion procedure in which first a small 
amount of metal which interacts strongly 
both with the active metal and support 
is introduced. 

REGENERATION OF CATALYST 

Regeneration by heating in an oxygen 
atmosphere of the catalyst containing sin- 
tered crystallites (3, 36, 37, 38) can be also 
explained in terms of wetting. Indeed, the 
new chemical atmosphere can modify the 
surface fret energies in such a manner that 
the spreading coefficient x becomes larger 
than zero 

x = usg - uss* - us’g > 0. 

For a crystallite in equilibrium 

(14) 

uw - flas’ = cos e I 1 (15) fls’g 

A spreading coefficient larger than zero is 
not compatible, however, with cos 0 5 1. 
Consequently if x > 0 the initial crystal- 
lite will no longer be stable, but will split 
and rcdisperse. The kinetics of splitting 
will be analyzed in a subsequent paper. 

CONCLUSION 

The aging kinetics of supported metal 
catalysts are determined by the diffusion 
of the crystallites upon the surface of the 
support and by the rate of sintering of the 
colliding crystallites. The equations ob- 
tained on the basis of this model describe 
the time dependence of the size distribu- 
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tion and the decay of the exposed surface 
area of metal. 

The theory can explain (a) the influ- 
ence of the preparation procedure, (b) the 
influence of the atmosphere, and (c) the 
influence of the temperature upon the rate 
of decay of the exposed surface area of 
the metal. 

Considerations based upon the wetting 
(adhesion properties) of the metal on the 
support suggest possibilities for improving 
the stability of the highly dispersed state 
of the metal on the surface of the support. 

APPENDIX I. TIME DEPENDENCE OF THE 

RATE CONSTANTS IN THE DIFFUSION 

MODEL 

In the case of diffusion control the pres- 
ent approach involves two time scales, a 
long time scale t, introduced in Eq. (2), 
which coincides with the time of the proc- 
ess, and a small time scale Q’, used in the 
calculation of the rate constants Kij. The 
present treatment can be used if the rate 
constants are only weakly time-dependent 
after a time which is sufficiently short com- 
pared to the time of the process (9). 
Values for the small scale time are not 
provided by the theory, but it is reasonable 
to assume that they are of the order of the 
time needed for sufficiently small varia- 
tions of the concentrations N,$ to occur. 

Equation (3), valid for “diffusion con- 
trol,” can be approximated by: 

K<j = 2Diin (rT)-“’ + i 
I 

- $ (T/r)“2 + ; T . . j> (3’) 

for small values of T = DijO’/Rij*, and by 

KG = 4DijT 
1 

ln (4~) _ 2,, 

- [In (4T;- 2r]2 ’ * * ’ c3”) I 

for large values of T. Here y = 0.5772 is 
Euler’s constant. If In 4T>> 2y N 1, then 
Eq. (3”) may be further simplified to give 

q?rDij 
Kij = In T4' (3“‘) 

Let US first assume that Dij is of the order 
of a surface diffusion coefficient, 1O-4 to 

10-l” cm2/sec (33). The collision radius 
Rij is of the order of the particle sizes 
present in the system (KY to 1O-7 cm). 
Consequently, the dimensionless time T 
is of the order of (lo2 to lOlo) X 6’ and 
hence is long after a very short time 8’. 
Since for such large values of T the strong 
inequality In 4T>> 1 is satisfied, Eq. (3’) 
can be approximated by Eq. (3”‘). Al- 
though the rate constants depend on the 
small scale time, this time-dependence is 
after a short time very weak (Fig. 17). 
Consequently, Kij from (3”‘) can be con- 
sidered constant and the present treatment 
in which no possibility for determining 13’ 
exists can be used. 

The mobility of the crystallites on the 
support is, however, much smaller than 
that of the molecules due both to their 
larger sizes and to stronger metal-support 
interactions. For this reason their diffusion 
coefficient becomes much smaller than a 
usual surface diffusion coefficient. In this 
case T is small for sufficiently small values 
of 8’ and consequently the rate constants 
Kii are initially strongly dependent upon 
time [Eq. (3’) 1. For further clarification 
we represent in Fig. 18 the dimensionless 
rate constant K,,/(4rrD,,) as a function of 
8’ for D,, = lo-l6 cm2/sec and R,, = lo-’ 
cm. One may observe a rapid variation 
until 0’ N lo3 set, and a nearly constant 
value for 8’ > lo3 sec. Only if the critical 
value B’c N lo3 set is small compared to 
the time t of the process it is reasonable 
to consider the rate constants independent 
of the small scale time 8’. In the cases 

0.03 I I I , I 1 

to-3 10-I IO I03 
TIME-SEC 

FIQ. 17. Dimensionless rate constant in the 
di&sion controlled caee vs time. 
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FIG. 18. Dimensionless rate constant in the 
diffusion controlled case vs time for decreased 
mobility. 

considered here, the time of the process is 
larger by several orders of magnitude than 
the critical time. 

The present approach can be used if 0’ 
simultaneously satisfies the following con- 
ditions: (a) 0’ is sufficiently long and as 
a consequence T large enough for equa- 
tion (3”‘) to be valid, (b) 8’ is sufficiently 
small compared to the time in which an 
appreciable modification of the concentra- 
tions N,, occurs. 

APPENDIX II. SIMILARITY THEORY FOR THE 
SIZE DISTRIBCTION OF THE SINTERING 

PROCESS (9) 

The dimensionless groups used to ac- 
count for the similarities in the shapes of 
the particle-size spectra at different times 
,of the process, can be derived by means 
.of a similarity solution. 

First a continuous distribution function 
n(~, t) is introduced such that n(v, t) dv is 
the number of particles per unit surface 
area having a volume in the range u to 
v + du. Equations (2) may be written in 
the form: 

dn(v, t> 1 __ = - 
at / 2 0 

“K(5, 2, - a)n(a, t)n(v - ir, t) clc 

/ 

m 

- 4% t> K@, v>n(a, t) a5 (II-l) 
0, 

The rate constants K(c, v) are given for 
the two limiting cases of “diffusion con- 

trol” and sintering control by Eqs. (3”’ and 
4), respectively. If the size dependence of 
the diffusion coefficient Dij and reaction 
rate constants for the merging process aii 
is taken into account as listed in Table 1, 
the rate constants K(fi,v) can be written 
as: 

K(ir, v) = K*(fi” + vm). (11-2) 

Here K” is a constant and the exponent m 
depends on the mechanism and on the size 
dependence of either the diffusion coeffi- 
cients or the reaction rate constants (see 
Table 1). 

One may observe that the distribution 
function depends on two variables, v and 
t. The aim of the similarity solution is to 
find a change of variables, able to trans- 
form Eq. (II-l) into an ordinary integro- 
differential equation and thus to reduce 
the number of variables. 

The similarity solution will be con- 
structed by means of two parameters: the 
total number of particles per unit surface 
area of support. N(t), and the total vol- 
ume of particles per unit, area of support 4. 
This choice is arbitrary. Other moments 
of the distribution function ?a(~, t), as for 
instance the total exposed surface area of 
metal, could be used as well. The results 
obtained would be equivalent. 

N(t) and + are chosen because of their 
simple physical significance. They are 
given by 

N(t) = /o” n(v, t) dv (11-3) 

4=jow vn(v, t) dv. (11-4) 

New variables are now introduced 

and 

?j = v/v*(t) (11-5) 

4% 0 = WMd, (11-6) 

where h(t) and v” (t) are functions of time. 
The form of these functions is determined 
from Eqs. (11-3) and (11-4). Introducing 
Eqs. (II-5 and 11-6) into (II-3 and II-4), 
one obtains 
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B N2 -- h(f) = A2 4 (11-7) 

(11-8) 

where 

A= 
/ o- if&) drl (11-9) 

and 

(11-10) 

are universal constants. The similarity var- 
iables q(7) and 7, given by Eqs. (II-5 
and II-6), can now be written as 

(11-5’) 

n* = 4!?! = #(q) g. (11-6’) 

Such a type of similarity transformation 
was first suggested, in a different problem, 
by Friedlander (94, S5). 

Before transforming Eq. (II-l) into an 
ordinary integro-differential equation, the 
rate of change of the total number of par- 
ticles, dN(t)/dt, has to be known. By 
integrating Eq. (II-l) over all particle 
sizes one obtains 

a (o 

s at 0 
n(v, t) dv = ‘3 

K* O” co =-- 
2 JJ 

n(v, t)n(e, t) [Cm + urn] dv dfi. 
0 

(11-11) 

Inserting Eqs. (11-5’ and 11-6’) into 
(II-Il), yields 

where 

x 4wk(ri)(71m + v? dq dli. (11-13) 

Equations (II-l), (II-2)) (II-5’), (H-6’)) 
and (11-12) lead to the following ordinary 
integro-differential equation 

Of course the solution of Eq. (11-14) rep- 
resents only one of the possible particular 
solutions of Eq. (II-l). The main problem 
is whether this particular solution which is 
compatible only with special types of ini- 
tial conditions has physical meaning. In 
what follows an answer to this question is 
given. A solution of Eq. (11-14) in closed 
form was obtained only for constant Kii 
[m = 0, Eq. (H-2) 1, namely 

+(q) = e-7. (11-15) 

For size dependent reaction rate constants 
the solution of Eq. (11-14) was obtained 
by replotting the numerical results of the 
discrete spectrum using the similarity vari- 
ables. The similarity variables for the dis- 
crete case were taken as: 

Figures 19 and 20 show the obtained 
results. For the “diffusion control” mech- 
anism the numerical solution after a short 
time becomes independent of the initial 
distribution of sizes and can be represented 
after this short time by the similarity solu- 
tion (Fig. 19). For “sintering control” a 
family of curves characterized by a supple- 
mentary dimensionless time rl, is obtained 
(Fig. 20). These curves are, however, close 
to each other. For this reason information 
concerning some cumulative distributions 
as are the total number of particles per 
unit surface area of support and the total 
exposed surface area of the metal may be 
obtained from the similarity transforma- 
tion even in the sintering controlled case. 

In what follows an equation for the 
decay of the exposed surface area of metal 
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FIG. 19. Similarity solution for diffusion con- 
trolled cases. 

is established using the similarity variables. 
A continuous formulation of the exposed 
surface area may be written as: 

s(t) = 62 /o” IP n(v, t) dv (H-18) 

where b, is a geometric factor, dependent 
on the shape of the particles. Introducing 
the similarity variables, Eqs. (11-5’) and 
(11-6’)) into Eq. (II-18), one finds that 
the rate of decay of the exposed surface 
area of metal is given by: 

A 
a 
aaP 

B 
h, b2, b, 

c 

ci, C’i, Pi 
Dij 
F F,., %o’ 

h(t) 

d&t) - = --bbaS(t)“3m, 
dt 

(11-19) 

10-3 

FIG. 20. Similarity solution for sintering con- 
trolled case. 

where 

ba = 
K* 

fj+2-3mAB3m-2b23-3m 

[I o - r12’3#(d 6 I 
3-3m 

. (11-20) 

Eq. (11-19) is equivalent to those estab- 
lished on the basis of numerical computa- 
tions (see Table 1). 

NOMENCLATURE 

Universal constant defined by Eq. (11-g). 
Actual area of the solid-solid interface of crystallite and support. 
Apparent area of the solid-solid interface of crystallite and support. 
Universal constant defined by Eq. (II-IO). 
Constants in Eqs. (II-12), (II-B), and (11-19). 
Concentration of the surface active metal within the metal crys- 
tallite. 
Constants independent of time. 
Diffusion coefficient of particle i with respect to particle j. 
Number of fixed particles per unit surface area of support composed 
of k metal units at t = 0, and t = t, respectively. 
Function of time defined by Eq. (11-7). 
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Bessel function of the first kind and zero order. 
Rate constant independent of time. 
Constant independent of particle size. 
Second order rate constant used in the discrete representation. 
Second order rate constant used in the continuous representation. 
Exponent in Eq. (II-Z). 
Total number of particles per unit surface area of support for t = t 
and t = 0, respectively. 
Number of moving particles per unit surface area of support com- 
posed of k metal units at time t = 0 and t = t, respectively. 
Exponent in Eq. (1). 
Continuous density distribution function. 
Probability that a particle formed from two colliding moving 
particle will move. 
Probability that a fixed particle will move after collided by a 
moving particle. 
Universal gas constant. 
Radius of interaction between two colliding particles i and j. 
Wenzel’s ratio, actual area of interface divided by apparent area of 
interface. 
Radius of particle containing i metal atoms. 
Total exposed surface area of the metal per unit surface area of 
support. 
Value of S at the initial moment. 
Exposed surface area of a particle containing k metal units. 
Dimensionless time. 
Time of the process. 
Interaction energy per unit surface area between the atoms on one 
side of the interface and the atoms on the other side of the interface. 
Strain plus dislocation or fracture energy per unit surface area. 
Dummy variable. 
Volume of a particle. 
Volume of a particle containing i metal units. 
Function of time defined by Eq. (11-8). 
Work of adhesion. 
Bessel function of the second kind and zero order. 
Reaction rate constant for the merging process of two particles 
containing i and j units. 
Trapping rate constants. 
Surface excess concentration of the surface active impurity on the 
support-gas interface. 
Surface excess concentration of the surface active impurity on the 
metal-gas interface. 
Surface excess concentration of the surface active metal on the 
support-metal interface. 
Euler’s constant. 
Spreading coefficient. 
Metal-gas surface tension and support-gas surface tension. 
Solid-solid surface tension. 
Similarity variable in the continuous representation, dimensionless 
volume. 
Similarity variable in the discrete representation. 
Contact angle. 
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Small scale time in the diffusion model. 
= 1 sec. 
Chemical potential. 
Dimensionless time in the sintering-controlled case. 

Dimensionless time in the diffusion-controlled case. 

Total volume of metal per unit surface area of support. 
Similarity variable in the continuous representation, dimensionless 
distribution function. 
Similarity variable in the discrete representation. 
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